金榜之路
学大陪你
个性化辅导
关于我们  |  联系我们

物理百科知识点—功率谱密度介绍

来源:学大教育     时间:2015-12-08 15:48:31


物理知识在生活中的应用很广泛,许多东西我们都能够运用物理学原理进行解释,可是对于我们普通的老百姓来说掌握这些貌似用处也不太大,但是对于学生或者学者来说就非常有必要了,请看下文物理百科知识点—功率谱密度介绍。

功率谱密度

在物理学中,信号通常是波的形式,例如电磁波、随机振动或者声波。当波的频谱密度乘以一个适当的系数后将得到每单位频率波携带的功率,这被称为信号的功率谱密度(power spectral density, PSD);不要和 spectral power distribution, SPD 混淆。功率谱密度的单位通常用每赫兹的瓦特数(W/Hz)表示,或者使用波长而不是频率,即每纳米的瓦特数(W/nm)来表示。

详细说明

尽管并非一定要为信号或者它的变量赋予一定的物理量纲,下面的讨论中假设信号在时域内变化。

上面能量谱密度的定义要求信号的傅里叶变换必须存在,也就是说信号平方可积或者平方可加。一个经常更加有用的替换表示是功率谱密度(PSD),它定义了信号或者时间序列的功率如何随频率分布。这里功率可能是实际物理上的功率,或者更经常便于表示抽象的信号被定义为信号数值的平方,也就是当信号的负载为1欧姆(ohm)时的实际功率。此瞬时功率(平均功率的中间值)可表示为:

由于平均值不为零的信号不是平方可积的,所以在这种情况下就没有傅里叶变换。幸运的是维纳-辛钦定理(Wiener-Khinchin theorem)提供了一个简单的替换方法,如果信号可以看作是平稳随机过程,那么功率谱密度就是信号自相关函数的傅里叶变换。

换算方法

信号的功率谱密度当且仅当信号是广义的平稳过程的时候才存在。如果信号不是平稳过程,那么自相关函数一定是两个变量的函数,这样就不存在功率谱密度,但是可以使用类似的技术估计时变谱密度。

f(t) 的谱密度和 f(t) 的自相关组成一个傅里叶变换对(对于功率谱密度和能量谱密度来说,使用着不同的自相关函数定义)。

通常使用傅里叶变换技术估计谱密度,但是也可以使用如Welch法(Welch's method)和最大熵这样的技术。

傅里叶分析的结果之一就是Parseval(帕塞瓦尔)定理(Parseval's theorem,其有时也被称为瑞利能量定理,Rayleigh's energy theorem),这个定理表明函数平方的和(或积分),也就是其能量,等于其傅里叶转换式平方之和(或者积分)

上面的定理在离散情况下也是成立的 (DTFT 和 DFT)。另外的一个结论是功率谱密度下总的功率与对应的总的平均信号功率相等,它是逐渐趋近于零的自相关函数。

相关释义

功率谱密度谱是一种概率统计方法,是对随机变量均方值的量度。一般用于随机振动分析,连续瞬态响应只能通过概率分布函数进行描述,即出现某水平响应所对应的概率。

功率谱密度的定义是单位频带内的“功率”(均方值)

功率谱密度是结构在随机动态载荷激励下响应的统计结果,是一条功率谱密度值—频率值的关系曲线,其中功率谱密度可以是位移功率谱密度、速度功率谱密度、加速度功率谱密度、力功率谱密度等形式。数学上,功率谱密度值—频率值的关系曲线下的面积就是均方值,当均值为零时均方值等于方差,即响应标准偏差的平方值。

看完了上文物理百科知识点—功率谱密度介绍之后,也许对于其中的某一块知识点你还没用搞太懂,接下来翻翻资料,或者询问学大教育专家,你就会有答案了!

网站地图 | 全国免费咨询热线: | 服务时间:8:00-23:00(节假日不休)

违法和不良信息举报电话:400-810-5688 举报邮箱:info@xueda.com 网上有害信息举报专区

京ICP备10045583号-6 学大Xueda.com 版权所有 北京学大信息技术集团有限公司 京公网安备 11010502031324号

增值电信业务经营许可证京B2-20100091 电信与信息服务业务经营许可证京ICP证100956